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31062 Toulouse, France
Visual object perception is usually studied by presenting

one object at a time at the fovea. However, the world

around us is composed of multiple objects. The way our

visual system deals with this complexity has remained

controversial in the literature. Some models claim that

the ventral pathway, a set of visual cortical areas

responsible for object recognition, can process only

one or very few objects at a time without ambiguity.

Other models argue in favor of a massively parallel

processing of objects in a scene. Recent experiments in

monkeys have provided important data about this issue.

The ventral pathway seems to be able to perform

complex analyses on several objects simultaneously,

but only during a short time period. Subsequently only

one or very few objects are explicitly selected and

consciously perceived. Here, we survey the implications

of these new findings for our understanding of object

processing.

Our capacity to identify visual objects relies on a large
neural network, from the retina to the prefrontal cortex,
which includes the so-called ‘ventral pathway’, a set of
posterior cortical areas extending from the primary visual
cortex (V1) to the infero-temporal (IT or TE) cortex. The
ventral pathway can be characterized by a hierarchical
architecture in which neurons in higher areas code for
progressively more complex representations by pooling
information from lower areas [1,2]. Hence, neurons in V1
code for relatively simple features such as local contours
and colors, whereas neurons in TE fire in response to
whole complex objects (Figure 1).

Another important characteristic of this hierarchical
organization is the size of the receptive fields (RFs; the
area of the visual field to which a neuron responds). In V1,
neurons respond to stimuli appearing in a small patch of
the visual field; that is, they have small RFs and thus
provide precise information about the position of the
stimulus in the visual field. However, because TE neurons
receive massive convergent inputs from lower areas, they
integrate information from larger areas of the visual field
and consequently have large RFs. This might underlie our
capacity to recognize an object independently of its size
and position (Figure 1). But large RFs could be a problem
because it is commonly assumed that they do not preserve
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spatial information, leading to the so-called ‘binding
problem’. Assuming that TE neurons do not preserve
spatial information, a neuron with a large RF responding
selectively to the conjunction of two elements ‘AB’ could
potentially be activated by the simultaneous presentation
of ‘AC’ and ‘DB’ [3]. This raises a fundamental question for
models of objects processing: is the ventral pathway able
to represent multiple objects simultaneously without
ambiguity? Recent experiments reviewed here provide
new key ideas on this topic. They suggest that a great deal
of spatial information might in fact be preserved in TE,
strengthening the case for parallel processing of visual
objects. However, other constraints seem to limit such
parallel processing to a short period of time after stimulus
onset.
Isolated objects and the binding problem

In laboratory conditions, when the visual system is
stimulated with a single object, it seems that there is no
binding problem, because all low-level elements in the
visual field belong to the same object. However, one still
needs a mechanism to organize correctly those elements in
space. Indeed, a large number of TE neurons appear to be
sensitive to specific element configurations such that a
neuron might respond to element A above B (e.g. a circle
and a square), but not to B above A [4,5]. It is striking
that such units can code for conjunctions of spatially
organized elements with very short latencies (on the order
of 80–100 ms) suggesting that a feedforward pass through
the ventral pathway might very often be enough to trigger
selective responses [6,7] (Figures 1 and 2).

Computational models have suggested how this feed-
forward selectivity could be established through learning
by progressively increasing feature complexity and pool-
ing information from larger parts of the visual field [8–10]
(Figure 2). Fast coding of element conjunctions is possible
with neurons sensitive to the spatial organization of their
inputs [11] and a biologically plausible way to achieve this
goal has been suggested recently [12]. This hypothesis is
reinforced by two key properties of neurons in V1. First,
they encode simultaneously low-level properties such as
orientation, color and spatial frequency [13–15]. Second,
they integrate information from outside their classical RF,
making inferences about contours for example [16].
Hence, the binding of the different elements composing
an object starts already in V1. Then, in V2, V4, and
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Figure 1. Schematic representation of the ventral visual pathway. Through a hierarchy of cortical areas, from V1 through temporal-occipital cortex (TEO) to temporal cortex

(TE), complex and invariant object representations are progressively built by integrating convergent inputs from lower levels. Examples of elements for which neurons

respond selectively are represented inside receptive fields (RFs; represented by circles) of different sizes. Feedback and horizontal connections are not shown but are often

essential to build up object representations. The first column of bottom-up arrows on the right indicates the progressive increase in the ‘complexity’ of the neuronal

representations. In the second column, figures are an estimate of the minimum and the average response latencies reported in the literature [7]. Although they suggest a

serial organization, there is considerable overlap in response latencies at different levels. In the third column are estimates of the smallest and largest RF sizes reported in the

literature. As RF size increases (presumably to allow translation and size invariance), neurons at higher levels typically receive inputs from more than one object at a time

during natural scene perception. This is generally considered as a problem for representing several objects without ambiguity. However, many TE neurons in fact have small

RFs at different positions, and neurons along the ventral pathway do not code for one characteristic of the input at a time but typically encode conjunctions of elements, thus

limiting ‘binding’ problems. Finally, it is important to note that area TE can be subdivided in smaller areas (not shown), based on anatomical and functional properties,

suggesting the existence of sub-pathways within the ventral stream.

Review TRENDS in Cognitive Sciences Vol.8 No.8 August 2004364
temporal lobe areas TEO and TE, neurons code for more
and more complex conjunctions of elements processed in
the previous stages.
Spatial information in TE

The ventral pathway is able to build very rapidly the
representation of an isolated object, finally encoded in TE
neurons. But because TE neurons have large RFs, ranging
from about 108 to 308 and often more (e.g. [17–19]), one
might question whether the ventral pathway is able to
deal with two or more objects simultaneously. Indeed, it is
tempting to assume that spatial information is lost in the
large RFs of TE neurons, making it impossible to combine
the elements from different objects without errors.
However, large RFs are not inconsistent with the coding
of spatial information (Figure 3). Indeed, TE responses
typically decrease in amplitude with the stimulus distance
from the RF center, suggesting that these neurons at least
encode the distance between the object and the RF center.
Some TE neurons even provide a strong response only in
a sub-part of their RF, or ‘hot-spot’, which might define
a computationally effective RF smaller than the full RF.
Having a variety of RF positions provides another source
of spatial information. Indeed, although the position of
a majority of RFs covers the center of vision, including
the fovea, they can be shifted up to about 88 in the
www.sciencedirect.com
parafovea [19]. Thus, even with large RFs, position
information can be recovered by combining the responses
of several neurons with overlapping RFs, at least in the
central part of the visual field. RFs are also strongly
biased towards the contralateral hemifield, suggesting a
division of labor between the two hemispheres (Box 1).
Finally, during the fixation of a target, many TE units
modulate their responses according to the position of the
eyes [20]. These different sources of spatial information
can potentially be combined to provide reliable position
information.

Although early studies have described RFs in area TE
as being large, it is only recently that a fully systematic
study has been performed [19]. This study found a high
degree of variability in RF size, with a mean of about
108 G 58 (SD), a minimum of 2.88 and a maximum of 268.
Other teams have also reported a large variability in RF
size (mean G SD): 24.58 G 15.78 [21]; 16.58 G 6.18 [18];
and 13.68 G 7.38 [22].

Therefore, some RFs are actually rather small. For
instance, after training with a set of new stimuli, neurons
were recorded with RF sizes ranging from around 48 to 158
[23]. More dramatically, DiCarlo and Maunsell trained
monkeys to discriminate small stimuli (!18) and found
that almost all TE neurons recorded had strong sensitivity
to small (1.58) position changes [24]. They estimated RF
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Figure 2. Multiple representations in the visual system. A simple hierarchical architecture illustrating how the visual system might represent multiple objects and avoid the

binding problem. The input pattern at the retina is composed of 8 oriented segments. These segments are then represented at the next processing level (roughly equivalent to

V1 and V2) by the activity of units in 4 maps of units, selective to left oblique, vertical, right oblique and horizontal orientations. At this point, no hypothesis has been made

concerning the nature or number of objects present. However, if the next stage (roughly corresponding to V4/TEO) contains neurons that have learnt to respond to particular

diagnostic configurations of activity, the presence of two face-like objects can be rapidly determined. These neurons are still at least partially spatially selective. If necessary,

we can add a final level (perhaps corresponding to TE) where the neurons pool together responses from neurons sharing similar selectivities, to produce object specific

responses that are fully invariant to changes in position. Such a system is able to handle multiple objects simultaneously, but could be configured to select one particular

output if required, by introducing competitive interactions between neurons at each level.

Box 1. Two hemispheres, two ventral pathways?

The ventral pathway is often described and modeled as a single

entity. It is actually split between two hemispheres and very little is

known about how they cooperate to give rise to visual scene

perception. In macaques, after section of the corpus callosum and

the anterior commissure, TE neurons no longer respond to stimuli

presented in the ipsilateral hemifield, indicating that both structures

are indispensable for inter-hemispheric integration [72,73].

When presented with two stimuli, one in each hemifield, TE

neuronal responses in the normal macaque brain are strongly driven

by the contralateral stimulus with very little influence from the

ipsilateral one [30,32]. This could be explained by faster activation of

TE neurons by contralateral stimuli, ipsilateral afferents being

delayed by the trans-callosal conduction time. Similarly, studies in

humans have suggested that during bilateral stimulation each

hemisphere analyzes mainly the contralateral hemifield [52,53,71].

In split-brain patients with transection of the corpus callosum,

bilateral search arrays can be inspected twice as fast than by control

subjects [74]. This indicates that each hemisphere has its own

limited pool of computational resources. In normal subjects, the

interference between the two hemispheres might occur in the visual

system itself or in other structures. In keeping with data from

recordings in monkeys, it seems that each ventral pathway can

analyze half of the visual scene on its own, in large part

independently of what is going on in the other one. Information

from each ventral pathway might then be combined in such

structures as the prefrontal cortex [52,53]. Finally, with one object

at the fovea, neuronal activations are also split between the two

hemispheres but the mechanisms leading to the perception of a

unified object are not yet fully understood [15].
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size to be about 2.58. The time course of the neuronal
responses indicated that position information was avail-
able in the early part of the response, suggesting it could
be essentially determined using feedforward mechanisms.

Small RFs might be explained by the existence of a
correlation between RF size and stimulus size [24]. This
suggestion does not seem to fit with the classic description
of TE neurons as being insensitive to changes in stimulus
size. However, although true for many neurons, some
actually modulate their response as a function of object
size and others respond selectively to a stimulus at a
particular size [22,25], with optimal sizes ranging from
1.78 to 308 for instance [21]. More importantly, one study
reported larger RFs with larger stimuli [19], a result
consistent with the finding that RF structure is dynami-
cally shaped by inhibitory and excitatory interactions
within TE [26]. Therefore, it might be that RF size is
adjusted to meet the demands of a particular task, as has
been demonstrated in parietal cortex [27].

There is also evidence that learning is position specific
unless the observer has already some expertise with the
stimuli, suggesting that position tolerance is learned
(see [24]). Similarly, view-invariant neurons are found
intermixed with view-selective neurons, indicating that
such invariance might be constructed within TE [2]. Thus,
TE might contain a heterogeneous population of cells with
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Figure 3. Coding of spatial information in area TE. In contrast to the small RFs in areas V1 and V2 (white circles) that provide reliable information about stimulus position, the

large RFs in area TE (yellow circles) are typically stimulated by more than one object during natural scene perception. This could potentially lead to ambiguous

representations. However, non-linearities in the visual system might allow TE neurons to avoid such ambiguities even when they are stimulated by several objects (see also

Box 2). Furthermore, there are three ways by which spatial information might be computed in TE. By combining the responses from several neurons with large overlapping

RFs (e.g. the 3 large circles on the right side of the figure) it is theoretically possible to reconstruct the position of an object. Some neurons also have a sub-area (or ’hot spot’;

dashed circle on the left) within their RF that provides a stronger response than other parts in the RF, thereby reducing the functional size of the RF. Finally, recent experiments

have shown that many TE RFs are actually very small (lower middle circle), providing efficient coding of one object without interference from neighboring objects in the

scene.
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a large panel of RF sizes to cope with various kinds of
perceptual problems. Quantitatively, this point also
suggests that contrary to area V1 where all cells have
small RFs, the spatial information in TE might be strongly
dependent on learning and on the task at hand.
Receptive fields in natural scenes

The literature reviewed above concerned isolated stimuli
presented on uniform backgrounds. Very few experiments
have looked at properties of TE neurons in natural scenes.
One such study recently showed that the RF size of TE
neurons is greatly reduced for stimuli presented over
complex rather than uniform backgrounds [28]. Further-
more, RFs appeared to shrink to fit approximately the size
of an object, a result accounted for by a model with
competitive interactions between object and background
elements in each layer of the ventral stream [29].
Representation of two or more stimuli

Overall, the responses of TE neurons might incorporate
enough spatial information to be able to encode the
identity of several objects in parallel. Several studies
have investigated the behavior of TE neurons in response
to two stimuli (e.g. [28,30–32]). Two stimuli typically enter
into competitive interactions following two important
rules. First, at the level of a single neuron, competition
is most likely to occur when both stimuli appear in the RF
of a neuron and not when one stimulus is inside the RF
and the other outside. Second, the response to two stimuli
is generally non-linear, being equal or inferior to the
strongest response with one stimulus. These two rules
www.sciencedirect.com
apply also to areas V2 and V4, and might thus be a general
property of neurons in the ventral pathway [33–36].

With small RFs, there would be no competition,
strengthening the case for parallel processing. With
large RFs, in some cases the response to the two stimuli
falling in a neuron’s RF is the weighted average of the
response to each of them presented alone [30,34]. In other
cases, neurons follow a MAX response function; that is,
the response to two stimuli is equal to the response elicited
by the most effective stimulus of the pair [32,36]. By
filtering out the influence of the less effective stimulus,
such non-linear response functions are particularly
efficient at preserving response selectivity in clutter
(Box 2). Although these two sets of results seem to be at
odds, even when neurons perform an average on their
inputs they do so after a delay, the initial part of their
response being close to a MAX function [37]. The fact that
the initial part of the neuronal response is identical
regardless of whether one or two objects are presented in
the neuron’s RF has been taken as evidence for late
selection models in which high-level object representa-
tions are first built before entering into competition [38].
Indeed, a few tens of ms of neuronal activity in a feedforward
network might be sufficient to transfer significant amounts
of information about an object [2,39,40].
Lateral inhibition

The evidence reviewed so far suggests that scene process-
ing might be achieved massively in parallel in a feed-
forward network. However, all the information about a
scene cannot be extracted with a single feedforward pass
through the ventral pathway. Feedforward networks

http://www.sciencedirect.com


Box 2. Neuronal coding of information in the ventral pathway

The way information is encoded in neurons sets to a large extent the

computational limits of any sensory system. With RFs of increasing

size, the ventral pathway would not be able to represent several

objects concurrently if neurons performed a linear combination of the

inputs. However, neurons present stimulus-response functions with

various kinds of non-linearities. For instance, there are neurons in

areas V4 [36] and TE [32] that respond according to a MAX function,

that is, they respond to the most active of their afferents, ignoring

other inputs. The MAX function is thus very interesting computation-

ally because it provides an efficient way to select a complex stimulus in

clutter, even if neurons have large RFs [37,75]. Such non-linearities

might considerably increase the capacity of the ventral pathway to

encode objects in parallel.

One important question is how the MAX (and other MAX-like)

functions might be implemented [76]. It has been suggested that once

activated by an input, a neuron might be desensitized, for instance by

shunting inhibition, so that its response to the next inputs are reduced

or even completely blocked [77]. In a network including fast-spiking

inter-neurons [78], shunting inhibition can be used to make neurons

sensitive to the order of occurrence of the incoming spikes, hence

implementing a MAX function in the time domain [40,77] (Figure I).

Here, the crucial aspect is the timing of arrival of the inputs. Indeed,

neurons selective to a given input will have a stronger and earlier

output for this input compared with other inputs. Thus, latency

provides a way to bind object representations – neurons that fire

together belong together [79]. But in a natural scene, a neuron will not

necessarily be reached first by the input it is sensitive to. With objects

of different contrasts, a non-effective object with a high contrast might

have a temporal advantage in the ventral pathway and, by mean of

lateral connections, inhibit the responses of neighboring neurons to

their preferred input arriving few milliseconds later. This is exactly

what has been found recently in V4: stimuli with higher contrast drive

the competition in neuronal RFs, strongly exciting neurons sensitive to

them, and strongly inhibiting those that are not [35]. Thus, by setting

response latencies, object contrast is a major low-level constraint in

natural scene processing that should be systematically manipulated in

computational and empirical studies.

Finally, the visual system seems to use a sparse coding of the

input, that is, only a relatively limited number of neurons are active at

the same time. Contrary to a massively distributed representation,

sparse coding potentially allows the representation of several objects

in parallel [80]. Sparse coding might be a way both to exploit the non-

accidental statistical properties of natural scenes and to reduce energy

consumption [51].
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Figure I. Using temporal coding to generate selectivity. A cascade of two cortical processing stages that each contain feedforward excitatory connections onto relay

neurons as well as feedforward (FF) and feedback (FB) inhibitory circuits. Input neurons a–e generate a wave of spikes in response to an input pattern. The first inputs to

fire produce a maximal effect at the next stage, but spikes arriving later are progressively shunted by the increase in feedforward inhibition, with the result that neurons

are sensitive to the order of firing. In this case, relay cell f will be most strongly activated because the strengths of its excitatory inputs matches the order of input firing

(bOaOcOdOe). The degree of activation of the other cells depends on how close their weights match the input order. Next, the feedback inhibition from the output level

of each stage can be used to perform a form of Winner-Take-All operation because as soon as one cell has fired, inhibition can be used to prevent other cells from firing. If

more than one cell in the first stage is allowed to fire, the next stage can decode the order in which they are activated. The plausibility of such a scheme is demonstrated by

the SpikeNet image processing software system, which uses these principles to produce highly selective responses to particular visual patterns. (A demonstration of the

system can be downloaded from http://www.spikenet-technology.com.)
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have serious problems with ambiguous patterns. Such
processing could require the use of feedback and lateral
connections [16,41,42]. Two pieces of evidence suggest
that the complete processing of an object requires time.
First, object representations in TE are refined over time,
the first part of the response providing coarser infor-
mation (e.g. it is a face) about the stimulus compared with
the later part (e.g. the face is smiling) [43,44]. Second,
complex objects seem to be represented by the combined
activity of several distant cortical columns [45], through
lateral GABAergic inhibition [46,47]. These lateral con-
nections are relatively slow compared with feedforward
and feedback connections [48]. With their large and highly
spiny dendritic arbors, pyramidal cells in TE might
www.sciencedirect.com
potentially receive more lateral inhibitory inputs than
neurons in more posterior areas [49]. The same lateral
inhibition might explain the competitive interactions
between spatially nearby object representations [30]. It
is thus possible that the competition between objects and
the construction of complex object representations in TE
are mediated by the same neuronal mechanisms. These
data have far reaching consequences. They strongly
suggest that TE might be able to encode several coarse
object representations simultaneously during a short time
after stimulus onset, but the number of objects repre-
sented would then rapidly decay as representations are
progressively refined through lateral inhibition.

On the other hand, the interactive inhibition between

http://www.spikenet-technology.com
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Box 3. Questions for future research

† What is the information processing capacity of the population of

TE neurons as a whole? This could be tentatively evaluated by the

simulation of very large neuronal networks based on the most recent

data about connectivity and functional properties. How many

solutions can such a system hold simultaneously?

† Is the primary function of area TE to recognize objects or to

represent them in detail? This would have implications on the

number of objects that can be represented by TE.

† How many objects can be explicitly processed in parallel? Is the

number of objects that can be explicitly processed inversely

proportional to the complexity of the representations necessary to

perform a given task? How many objects can be implicitly

processed?

† How does foveal bias constrain parallelism in the ventral pathway?

† What is the effect of stimulus contrast on the competitive

interactions between objects in the ventral pathway? Combining the

approaches used by Reynolds [35] and Rolls [28] might provide the

answer to this question.

† How do lesions and stimulation of V4, TEO, FEF and parietal areas

affect the responses of TE neurons?
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cortical columns might be a way to code spatial and shape
relationships between objects [31]. For instance, a neuron
responding to object A could modulate its response
depending on how close it is to object B, but not to object
C, thus providing a way to encode several objects and their
relationships at once. This might be possible with neurons
encoding full objects rather than object parts. In keeping
with this idea, the response of many TE neurons appears
to be tuned to diagnostic elements of stimuli [50] and some
neurons can be highly selective to one or very few objects
among a large set (e.g. [44]). Thus, well-learned stimuli
could be detected in cluttered scenes using diagnostic
conjunctions of elements, without relying on highly
detailed representations which might require further
processing time. Indeed, what is important for object
recognition is to associate objects with distinct patterns of
activation [8], an idea very close to Barlow’s original idea
of ‘cardinal’ cells [51]. The existence of such cells could
explain why some complex objects can be detected so
efficiently [52–55]. Reciprocally, efficient object detection
does not imply that rich representations are formed for all
objects in a scene.

Low-level and high-level constraints

The evidence reviewed so far suggest that the ventral
stream might be able to encode high-level diagnostic
information about objects in parallel, but competitive
interactions would then strongly limit the number of
detailed representations available. In this section, we
consider two other important constraints that might limit
parallel object processing.

Low-level factors

Low-level factors include: (1) the information provided by
the stimulus itself and its context (such as contrast, see
Box 2); (2) the optics of the eye; (3) RF size and distribution
of the neurons in the retina, the lateral geniculate nucleus
and V1; and (4) noise in neuronal responses.

The effects of low-level factors are far from trivial and
need to be taken into consideration in realistic models of
visual processing. For example, even a discrimination
system that performs optimally, using all the information
available in the stimulus without limitations will be
sensitive to such factors as the number of distractors or
the similarity between target and distractors [56,57].

A fundamental example of how low-level factors
constrain object processing is the discovery that during
visual search, targets at the fovea are processed more
efficiently than targets in the periphery [58]. This
eccentricity effect can be largely accounted for by cortical
magnification and cortical image density in V1 [59,60].
The cortical magnification in V1 might also passively bias
competition between object representations in TE [29], so
that the responses of TE neurons are biased towards the
stimulus at the fovea over those in the periphery [28,61].
This could be explained by faster responses to foveal than
extra-foveal stimuli [25]. The foveal bias might consider-
ably limit the capacity of area TE to represent several
objects accurately. It is therefore crucial that future
experiments determine the amount of information avail-
able for objects in the periphery with and without an
www.sciencedirect.com
object at the fovea. Finally, because the spatial resolution
in the retina declines dramatically with eccentricity,
information about objects in the periphery might be so
poor that no decisions can be made about them.

High-level constraints

The ventral pathway is integrated in a network of cortical
areas allowing goal-oriented behaviors. Both prefrontal
cortex and the parietal cortex are thought to provide high-
level, top-down constraints on computations performed in
the ventral pathway [38]. They both represent stimulus
information in the context of the current task as opposed
to the ventral pathway that is more tuned to the
immediate physical aspects of the stimulus [7,62–64].

Contrary to a widespread belief, the parietal cortex
does not appear to be necessary to bind complex object
representations [65]. Instead, it is needed to filter out the
influence of distractors during object discrimination [66].
Areas V4 and TEO in the ventral pathway might receive
top-down bias from parietal cortex, allowing a target to be
explicitly reported [66]. Furthermore, spatial selection in
areas V4 and TE has a very high resolution, suggesting
that competitive interactions between objects in those
areas is in large part achieved in earlier areas V1 and V2
through feedback connections [29,30,34]. The complex
interactions between the different levels of the ventral
pathway and the parietal cortex might therefore constrain
the number of objects that can be perceived simul-
taneously and consciously reported (see also Box 3).

Similar conclusions might apply to the prefrontal
cortex. In addition to visual information, prefrontal
neurons represent categorical information about stimuli;
for example, whether they are targets or distractors for
the task [63,64]. For instance, the frontal eye field (FEF) is
a visuo-motor structure involved in target selection and
saccade generation. Neurons in the FEF discriminate a
target less efficiently when it is more similar to the
distractors, in keeping with the behavior of monkey and
human observers [64]. Thus, in addition to the ventral
pathway itself, the FEF might be another site in which
competition takes place between objects. The outcome of
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this competition might be sent back to the ventral
pathway, as suggested by the finding that before a saccade
is generated towards a target, the activity of FEF neurons
encoding the position of the target enhances the response
of V4 neurons with the same retinotopic preferences [67].

A recent model has been suggested in which ‘selection
for action’ in the FEF affects object representations in
the ventral pathway [68]. This proposition has been
strengthened by evidence that in macaques and humans
there is considerable overlap in neuronal response
latencies in the ventral pathway with those in parietal
and prefrontal cortices [41,69].

Overall, mechanisms of selection for action in the
prefrontal and parietal cortices could constrain compu-
tations in the ventral pathway, in keeping with models in
which object representations compete to a large extent at
the output selection stage [38,53]. Hence, behavioral
responses might systematically underestimate the
capacity of the ventral pathway.
Conclusions

Recent advances in monkey neurophysiology and compu-
tational neuroscience highlight the sophistication of the
mechanisms implemented in the ventral pathway. Contrary
to the claim that the large RFs in TE prevent object-
recognition mechanisms from dealing with more than one
object at a time, there is now clear evidence that the ventral
pathway is well equipped for parallel processing in cluttered
scenes. However, local competition, and low-level and high-
level constraints considerably limit the amount of infor-
mation that can be processed and explicitly accessed at once,
so that serial selection of objects is often necessary.

Recent experiments in humans have provided striking
evidence in favor of serial selection of objects in some
circumstances [70,71]. This review points to a kind of
model in which parallelism is limited to a very short period
of time after stimulus onset. The dynamic network
comprising prefrontal and parietal cortices seems to select
an object very rapidly in order to move the eyes towards it,
without processing all objects in a scene in detail. Thus, in
normal viewing conditions, a scene is probably processed
in cycles (e.g. there might be a reset every saccade),
starting with a short high-level parallel analysis and then
zooming in on one or a few objects. Future experiments
will need to determine not only the behavioral conditions
in which object processing in scenes is limited, but also
how the dynamics of the underlying cortical network
limits behavioral performance.
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